Fixed Point of Strong Duality Pseudocontractive Mappings and Applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum-Norm Fixed Point of Pseudocontractive Mappings

and Applied Analysis 3 where K and Q are nonempty closed convex subsets of the infinite-dimension real Hilbert spaces H1 and H2, respectively, and A is bounded linear mapping from H1 to H2. Equation 1.9 models many applied problems arising from image reconstructions and learning theory see, e.g., 4 . Someworks on the finite dimensional setting with relevant projectionmethods for solving image r...

متن کامل

Viscosity Approximation Methods and Strong Convergence Theorems for the Fixed Point of Pseudocontractive and Monotone Mappings in Banach Spaces

Suppose that C is a nonempty closed convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. A viscosity iterative process is constructed in this paper. A strong convergence theorem is proved for a common element of the set of fixed points of a finite family of pseudocontractive mappings and the set of solutions of a finite family of monotone mappings....

متن کامل

Strong Convergence Theorems for a Common Fixed Point of a Family of Asymptotically k-Strict Pseudocontractive Mappings

and Applied Analysis 3 It is shown in [19] that if E = H, a real Hilbert space, then ρ(t) = t, for t > 0. In our general setting, throughout this paper we assume that ρ(t) ≤ 2t. Lemma 3. Let E be a real Banach space. Then the following inequality holds: 󵄩󵄩󵄩󵄩x + y 󵄩󵄩󵄩󵄩 2 ≤ ‖x‖ 2 + ⟨y, j (x + y)⟩ , ∀x, y ∈ H, j (x + y) ∈ J (x + y) . (10) Lemma 4 (see [20]). Let E be a uniformly convex Banach spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2012

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2012/623625